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Elastic modulus



Elasticity vs resonance – short video (You tube)

Methods of measurement of Young’s modulus

Flexural vibrations  of  a bar - theoretical aspects 

Experimental determination of ‘Y’ for a steel bar.

Other Moduli of elasticity 

Stiffness and engineering applications
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Elasticity vs resonance and structure collapse

Tacoma Narrows Bridge
From Tacoma to Gig harbor, Washington, USA

Opened for traffic : July 1, 1940
Collapsed on:          Nov.7,1940

Source : You tube



Source : You tube



Source : Wikipedia

The two new bridges in 2007



“When you can measure what you are speaking 
about, and express it in numbers, you know 
something about it, 
when you cannot express it in numbers, your 
knowledge is of a meager and unsatisfactory kind 
……….. “

Sir William Thomson, (Lord Kelvin) 1883

Importance of measurement



No Technique

1 Stress-strain curve  – tensile testing instrument

2 Direct measurement of Stress - strain in long wires-Searle’s 
method

3 Cantilever method – (i) depression by pin and microscope, (ii) 
deflection by optical measurement, (iii) free oscillations

4 Measurement of bending moment  of supported bar
– Koenig’s method

5 Measurement of velocity of sound- piezoelectric method
6 Tip induced deformation experiments

7 Flexural vibrations of a bar

Experimental determination of Young’s modulus 

Ref: (i) A text book of practical physics by MN Srinivasan, S Balasubramanian and 
R Ranganathan,S Chand & sons, New Delhi, 2003
(ii) Determination of elastic moduli of sintered metal powder compacts using an ultrasonic method.
P Ramarao and AA Krishnan, J. Scientific & industrial Research, 1959, Vol 18B(6), pp 260-261



In transverse vibrations of bars, 
“Elasticity” is responsible for restoring 
successive portions of the bar to their 
original position, where as for transverse 
vibrations of strings, “Tension” is 
responsible.

Pictures : Wikipedia

Transverse vibrations in a stretched string

Flexural Vibrations of a bar, supported at one end

The theory of vibrations of bars, even when simplified to the utmost by the 
omission of unimportant quantities, is decidedly more complicated than that of 
perfectly flexible strings. 

Lord Rayleigh, The theory of sound (1894)



Step No. Operation

01 Equations for bending moment  and shear forces

02 Wave equation and  the general solution

03 Application of  boundary conditions at  clamped and free 
ends and  equation for fundamental frequency.

Sources : 
• “A simple experiment on flexural vibrations and Young’s modulus 

measurement” by Salvatore Ganci, Physics Education 44(3), pp 236-240, 2009 
• Unified Physics, SL Gupta and Sanjeev Gupta,  Vol.1,  Mechanics, Waves and 

Oscillations  (1996)
• Kit developed for doing experiments in physics- Instruction manual by R 

Srinivasan and  KRS Priolkar- March 2010 (Sponsored by Indian Academy of 
Sciences, Bangalore, Indian National Science  Academy, Delhi and The National 
Academy of Sciences India, Allahabad )

Mathematical steps to calculate the  Young’s 
modulus by flexural vibrations of a bar
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Consider a bar of rectangular cross section ‘A’

When the bar is bent,  length of neutral line (NN’) is not changed. Tensile 
and compressive forces increase as we move away from neutral surface.

The forces of compression below the neutral surface and elongation above 
the neutral surface constitute a couple and the magnitude of the moment of 
the couple is known as “bending moment”

N N’

A
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The longitudinal strains in the layers increase from zero (neutral layer) to a 
maximum at the upper and lower surfaces and accordingly the stresses. 

A

At equilibrium, the anticlockwise internal couple is balanced by the 
clockwise external couple 

Origin  of  bending moment in a bar
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NN : Neutral surface
R : Radius of curvature of 
neutral surface from “O” the 
centre of curvature.
θ : Angle subtended by neutral 
surface at the centre “O”

BC is a 
part of the 
bent beam

C B

τ =  Y A k2 (∂2y / ∂x2)

‘y’ is the transverse displacement of the bar 
at position ’x’

The bending moment of the bar is given by 

Bending torque is second partial derivative of  position 
(x) and hence is not the same at every part of the bar.

A k2 = ∫ r2dA (geometric moment of inertia)

Method : Strain - stress - force - torque 
evaluation at elementary level and 
integration 

Equation for  bending moment 



Distortion of the bar produces bending moments as well as shear forces.

Fy =  (∂τx / ∂x)
Shear forces are partial 
derivative of the bending torque

Condition:
When the bar is vibrating, it is in 
dynamic equilibrium and the 
torque and the shear forces 
must be such as to produce no 
net turning moment.

Substituting the value of τx ,

Fy = Y Ak2 (∂3y / ∂x3)

(- Fy)x+dx

(Fy)x

x x+dx

- τ (x+dx)
τ (x)

elementary length 
‘dx’ of the bar

(Fy)x = upward shear force at left end (+)
τx              = anti clockwise torque at left end (+)
(Fy)x+dx = downward shear force at right end (-)
τx+dx = clockwise torque at right end (-)

Shear forces are third partial derivative 
displacement with respect to position

Method : Define torques and 
forces at the elementary level 
and apply the condition

Equation for  shear forces



Method : Differentiate the force equation  and apply Newton’s  second law 
(F=ma)

i.e. dFy = ρ A dx (∂2y / ∂t2)  =  {Y Ak2 (∂4y / ∂x4)} dx

(∂2y / ∂t2)  =  (Y/ ρ) k2 (∂4y / ∂x4) 

Wave equation

Transverse vibrations of a rigid 
bar contains fourth partial 
derivative.

(∂2y / ∂t2)  =  v2k2 (∂4y / ∂x4) 

Wave equation for transverse vibrations of strings :
(∂2y / ∂t2)  =  v2 (∂2y / ∂ x2) Second derivative

The solution is y = { f(vt + x)}.  

For comparison :

Assuming harmonic vibration with frequency, ‘ω’,  the wave 
equation can be re-written as 

Y (A k2) (∂4y / ∂ x4 ) - ρ A ω2 y = 0 

ρ= density; 
A = area of cross section
Y = Young’s modulus 
Ak2 = geometric moment of inertia
v = √ (Y/ ρ) = Velocity2

1

3

Wave equation



For a rectangular bar, Ak2 = bd3/12 where ‘b’ is width and ‘d’ is thickness.

Upon simplification, the eqn. (3) becomes 

(d4y / dx4 ) – α4 y = 0 where α4 = 12 ρω2 Yd2

The general solution of this eqn. is 

Y(x)  = A cosh(αx) + B sinh (αx)  + C cos (αx)  + D sin (αx) 

Method : general solution –
application of boundary 
conditions to get constants-
frequency equation

Boundary conditions

@ Free end: 
There can be neither external torque 

nor a shearing force.
∂2y / ∂x2 = 0  and  ∂3y / ∂x3 = 0

@ Clamped end: 
There can be no displacement 

and slope at all  time.
y = 0  and  ∂y / ∂x  = 0 

Solution to the wave equation



1. At the clamped end:     x = 0          (i)   y = 0           and   (ii) dy / dx = 0
2. At the free end :            x = l           (iii) d2y / dx 2 = 0  and  (iv) d3y / dx3   = 0

Applying the boundary 
conditions(1), we get
A+C = 0
B+D = 0

Applying the boundary conditions(2), we get
A (cosh αl + cos αl)  + B (sinh αl + sin αl ) = 0
A (sinh αl + sin αl)   + B (cosh αl + cos αl ) = 0

Eliminating trivial solutions, we get α1 l = 1.875  for the first solution.

The lowest frequency is given by     ω1 = (1.875 / l)2  (Y d2 / 12 ρ)1/2

Y = (4π2 / 1.8754 ) (12 ρ / d 2) ( f l2 )
l2 and 1/ f have linear dependency  

Formula:  ρ : density
d: thickness
F: lowest frequency
l: length

The four constants A,B,C and D are determined 
from boundary conditions.



Experimental set-up and measurement 
of Young’s modulus



1. To measure the first frequency of vibration at different 
lengths and show that l2 and 1/f have linear  relationship.

2. To determine the average value of the slope of the curve (fl2) 
3. To determine the Young’s modulus of the material of the bar 

by using the formula   

Component details of experimental set-up

Signal 
generator

Power 
amplifier

Young’s 
modulus 
set-up

Frequency 
measurement

Aims of the Experiment



Frequency 
meter

Signal 
Generator Power 

Amplifier

Youngs Modulus 
setup

Experimental set-up



Flexural vibrations of a steel bar



Sl.No Length, l
(cm)

Frequency, 
f (Hz)

l2
(m2)

1/f
(sec)

1 25 9.15 0.0625 0.1093
2 23 11-04 0.0529. 0.0906
3 21 13.3 0.0441 0.0752
4 19 16.34 0.0361 0.0612
5 17 19.76 0.0289 0.0506
6 15 25.7 0.0225 0.0389
7 13 34.5 0.0169 0.0292
8 11 46.03 0.0129 0.0217

Observations



y = 0.5755x + 0.0003
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Line equation : y = (0.5755) x + 0.0003

Slope,l2f = 0.5755 m2/s

Y = (4π2 / 1.8754) (12 ρ / d2) (l2f)2 = 38.33 ( ρ / d2) (l2f)2

Substituting the values,
Y = 182 GPa

Thickness, (d) = 0.74 x 10-3 m
Density, (ρ) of steel  = 7850 kg / m3

Slope  (l2f) = 0.5755 m2/s

Plot of l2 Vs 1/f and determination of 
Young’s modulus



Other moduli of elasticity



Shear stress:   τ =  F / Ao
F: Applied parallel to upper 
and lower faces each 
having area A0.

Shear modulus

Torsion: like shear.

Shear strain:     γ = tanθ
( × 100 %) θ is strain angle

Shear modulus, G = shear 
stress / shear strain

Source: Materials Engg,Science, Processing and Design by Michael Ashby et al
Butterworth-Heinemann,  2007

The cube 
undergoes a 
change in volume; 
but no change in 
shape

Bulk stress = applied 
pressure  = p
Bulk strain = change in 
volume = - (∆v/v)}

Bulk modulus  K = Bulk 
stress / bulk strain

Bulk modulus



Three types of elastic moduli

Tensile stress, Tensile 
strain and Young’s 
modulus

Shear stress, Shear strain 
and Shear modulus

Bulk stress, Bulk strain 
and Bulk modulus

Source: Materials Engg,Science, 
Processing and Design by Michael Ashby 
et al Butterworth-Heinemann,  2007

Poisson’s ratio

Elastic deformation

σ = (lateral strain) / 
(vertical strain) 

Dimensionless



(E,K) ( E,G ) (K,G) ( E, σ ) (K, σ ) ( G, σ )

E = -- -- 9KG / 
(3K+G)

-- 3K (1-2σ ) 2G (1+σ )

K = -- EG / 3(3G - E) -- E / 3(1-2σ ) -- 2G(1+σ ) /
3(1-2σ )

G = 3KE / (9K-E) -- -- E / 2(1+ σ) 3K (1-2 σ) /
2(1+ σ)

--

σ = (3K – E) / 6K (E/2G) - 1 (3K – 2G) /
2(3K+G)

-- -- --

E : Young’s modulus; 
G : Shear modulus ; 
K : Bulk modulus;  
σ : Poisson’s ratio

Conversion formulas

For homogeneous isotropic materials simple relations exist between elastic 
constants, that allow calculating them all, as long as two constants are 
known.

Source: Wikipedia

Relationship between Elastic moduli for 
homogeneous isotropic materials



Engineering applications of elastic 
properties



Stiffness (S = dF/dr) represents the rigidity of an object — the extent to 
which it resists deformation in response to an applied force. 

Stiffness

Source: Wikipedia

A body may also have a rotational stiffness, ( ratio of applied torque  to 
angle of rotation),  shear stiffness (ratio of applied shear force to shear 
deformation) and torsional stiffness (ratio of applied torsion moment to angle 
of twist)

The stiffness of an engineering component  depends not only on the 
Young's modulus of the material, but also on how it is loaded (tension, or 
bending) and the shape and size of the component. 

A stiff material has a high Young's modulus (e.g. diamond). 
A flexible material has a low Young's modulus (e.g. rubbers). 

Elastic modulus Significance
Young’s Modulus (E or Y) Resistance to stretching
Shear Modulus (G) Resistance to twisting

Bulk Modulus (K) Resistance to hydrostatic 
compression



In springs, which store 
elastic energy 
(e.g. vaulting poles, 
bungee ropes). 

In transport applications 
stiffness is required at 
minimum weight 
(e.g. aircraft, racing 
bicycles) . 

Stiffness is important:  
In designing products 

which can only be 
allowed to deflect by a 
certain amount 
(e.g. bridges, bicycles, 
furniture).

Typical design issues

Source: Wikipedia



Pictures from Internet

Design criteria: Transfer bending moments, shearing forces and compressions

Engineering  Applications – common examples



Thank you


